Модифицированные волокна

Домашняя Вверх Физически модифицированные волокна Микроволокна

Внимание! Сайт не обновляется.

 Приглашаю за новой информацией по новым адресам

Домашняя
Новые адреса
Детская
Карта сайта
Об авторе
Материаловедение
Технология
Конструирование
Автоматизация
Студентам
Одежда будущего

Дополнительная информация по данной теме на стр: "Текстильные ноу-хау"

Электропроводные волокна получают при обработке свежесформованных волокон солями тяжелых металлов, в результате получают волокна с наполнением мелкодисперсными частицами металлов или их соединений. Такие волокна могут обладать и бактерицидными свойствами.

Одним из направлений модификации волокон является получение огнезащищенных волокон, т.к. актуальной является профилактика пожаров за счет применения огнестойких текстильных изделий. В ряде стран приняты законы, которые запрещают применение воспламеняющихся материалов для детской одежды и домашнего текстиля, в гостиницах, зрелищных, лечебных и офисных учреждениях, в авиации, автомобилестроении, железнодорожном транспорте. Огнезащищенные волокна получают путем введения в их состав антипиренов (замедлителей горения), химической огнезащищающей обработкой или другими способами.

Углеродные волокна получают на основе полимераналогичных превращений исходных волокон (вискозных и полиакрилонитрильных). При высокотемпературных обработках этих волокон происходит полное изменение структуры полимера. Используя исходные волокна с различной структурой и свойствами, проводя термические обработки в различных средах и при различных температурных режимах, получают широкую гамму различных видов углеродных карбонизованных и графитированных волокон: высокопрочных, высокомодульных, электропроводных, термо- и жаростойких, химически стойких и других.

При высокотемпературной обработке карбонизованных волокон в среде водяного пара или двуокиси углерода получают активированные волокна, имеющие высокую внутреннюю пористость и удельную поверхность. Они находят широкое применение в локальных системах очистки газов и жидких сред, а также в медицине.

Антибактериальные волокна. Например, в волокна полиэстера добавляется зеолит, который при соприкосновении с поврежденной поверхностью тела выделяет кислород, препятствующий развитию анаэробных бактерий. Эти свойства сохраняются при стирке и химической чистке.
Другая группа антибактериальных волокон производится с использованием металлических солей, которые при контакте с раной изменяют оптимальные для некоторых групп бактерий условия существования.

Использование антимикробных волокон позволяет создавать текстильные изделия, защищающие человека от воздействия болезнетворных бактерий и грибков.
Антимикробные волокна также могут препятствовать разрушению самого материала от действия плесневых грибков и бактерий. Например, для придания коврам антимикробного эффекта итальянская компания Radici Group создала новую антимикробную ковровую нить из
полиамида-6 с содержанием антимикробного агента на основе серебра. Ковровое изделие с использованием антимикробной ковровой нити сохраняет свои свойства на весь срок эксплуатации, подавляя распространение бактерий, плесени и других микроорганизмов, способных вызвать запахи, обесцвечивание и порчу.

Ионообменные волокна медицинского назначения получают методом прививочной полимеризации или путем полимераналогичных превращений нитрильных групп полиакрилонитрильных волокон Присоединением к ионообменным волокнам веществ, обладающих биологической активностью, получают некоторые виды волокон медицинского назначения. Одним из вариантов метода является присоединение к ионообменным группам ионогенных лекарственных препаратов.

В России имеется оригинальная технология получения биоактивных и негорючих полиэфирных волокон на основе крейзинга полимера. В процессе ориентационного вытягивания полимера в особых жидких средах в полимере возникает система взаимосвязанных нанопор, заполненных окружающей жидкостью, после чего происходит коллапс возникающей структуры и полное закрытие (схлопывание) образовавшихся нанопор. На этом методе основано введение в полимер модифицирующих бактерицидных препаратов, антипиренов, антибиотиков, дезодорирующих, противоопухолевых, обеззараживающих и др препаратов.

Волокно, обладающее свойствами терморегуляции, т.е. поддержания постоянной комфортной температуры тела. Волокна Outlast® содержат отдельные капсулы, наполненные фазопереходным веществом, которое при нагреве превращается в жидкость, а при отдаче тепла переходит в твердое состояние. Такие волокна могут быть введены в различные материалы. Имеет широкое применение в обувной промышленности и производстве одежды для холода.

Химическое волокно с поверхностными свойствами натуральной шерсти получено за счет прививки на его поверхности до 10% кератина шерсти. Это дает возможность использовать нереализуемые или нерационально используемые в настоящее время отходы шерстяных производств.

Химическое волокно с поверхностными свойствами натурального хлопка. В США разработали метод обволакивания полиэфирного волокна слоем целлюлозы с помощью бактерий. Бактерии, подкармливаемые глюкозой, за 10-15 часов покрывают целлюлозой волокна, опущенные в питательную среду. В результате в волокне сочетаются положительные качества полиэфира и хлопка.

Термоплавкие волокна, получаемые из низкоплавких сополимеров, используют в качестве термопластичных (термоплавких) компонентов для скрепления базовых волокон в клееных нетканых материалах и изготовления термосклеивающих прокладок, широко применяемых в производстве одежды для скрепления ее деталей.

Текстурированные нити
Пористые нити
Полые нити
Профилированные нити
Бикомпонентные нити
Микроволокна

Домашняя | Вверх

© Клепачева Л.С. 2006-2008 е-mail: larklas@mail.ru


Добро пожаловать в

БИБЛИОТЕКУ ЛЕГКОЙ ПРОМЫШЛЕННОСТИ
"T-STILE"